Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
Syntax
public class Bno055 : ByteCommsSensorBase<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)>, IObservable<IChangeResult<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)>>, ISamplingSensor<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)>, ISensor<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)>, IDisposable, IAccelerometer, ISamplingSensor<Acceleration3D>, ISensor<Acceleration3D>, IGyroscope, ISamplingSensor<AngularVelocity3D>, ISensor<AngularVelocity3D>, ITemperatureSensor, ISamplingSensor<Temperature>, ISensor<Temperature>, II2cPeripheral
Constructors
Bno055(II2cBus, Addresses)
Create a new BNO055 object using the default parameters for the component.
Declaration
public Bno055(II2cBus i2cBus, Bno055.Addresses address = Addresses.Address_0x28)
Parameters
Type | Name | Description |
---|---|---|
II2cBus | i2cBus | I2C bus (default = 400 KHz). |
Bno055.Addresses | address | Address of the BNO055 (default = 0x28). |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
Bno055(II2cBus, byte)
Create a new BNO055 object using the default parameters for the component.
Declaration
public Bno055(II2cBus i2cBus, byte address)
Parameters
Type | Name | Description |
---|---|---|
II2cBus | i2cBus | I2C bus (default = 400 KHz). |
byte | address | Address of the BNO055 (default = 0x28). |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
Properties
Acceleration3D
Current Acceleration
Declaration
public Acceleration3D? Acceleration3D { get; }
Property Value
Type | Description |
---|---|
Acceleration3D? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
AngularVelocity3D
Current Angular Velocity
Declaration
public AngularVelocity3D? AngularVelocity3D { get; }
Property Value
Type | Description |
---|---|
AngularVelocity3D? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
DefaultI2cAddress
The default I2C address for the peripheral
Declaration
public byte DefaultI2cAddress { get; }
Property Value
Type | Description |
---|---|
byte |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
EulerOrientation
Current Euler Orientation
Declaration
public EulerAngles? EulerOrientation { get; }
Property Value
Type | Description |
---|---|
EulerAngles? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
GravityVector
Current Gravity Vector
Declaration
public Acceleration3D? GravityVector { get; }
Property Value
Type | Description |
---|---|
Acceleration3D? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
IsAccelerometerCalibrated
Get the accelerometer calibration status.
Declaration
public bool IsAccelerometerCalibrated { get; }
Property Value
Type | Description |
---|---|
bool |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
IsFullyCalibrated
Is the system fully calibrated?
Declaration
public bool IsFullyCalibrated { get; }
Property Value
Type | Description |
---|---|
bool |
Remarks
The sensor is fully calibrated if the system, accelerometer, gyroscope and megnetometer are all calibrated.
IsGyroscopeCalibrated
Get the gyroscope calibration status.
Declaration
public bool IsGyroscopeCalibrated { get; }
Property Value
Type | Description |
---|---|
bool |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
IsInFusionMode
Check if sensor is currently working in Fusion mode.
Declaration
public bool IsInFusionMode { get; }
Property Value
Type | Description |
---|---|
bool |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
IsMagnetometerCalibrated
Get the magnetometer status.
Declaration
public bool IsMagnetometerCalibrated { get; }
Property Value
Type | Description |
---|---|
bool |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
IsSystemCalibrated
Get the system calibration status.
Declaration
public bool IsSystemCalibrated { get; }
Property Value
Type | Description |
---|---|
bool |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
LinearAcceleration
Current Linear Acceleration
Declaration
public Acceleration3D? LinearAcceleration { get; }
Property Value
Type | Description |
---|---|
Acceleration3D? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
MagneticField3D
Current Magnetic Field
Declaration
public MagneticField3D? MagneticField3D { get; }
Property Value
Type | Description |
---|---|
MagneticField3D? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
OperatingMode
Get / set the current operating mode for the sensor.
Declaration
public byte OperatingMode { get; set; }
Property Value
Type | Description |
---|---|
byte |
Remarks
Mode change takes 7-19 ms.
PowerMode
Get or set the power mode for the sensor.
Declaration
public byte PowerMode { get; set; }
Property Value
Type | Description |
---|---|
byte |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
QuaternionOrientation
Current Quaternion Orientation
Declaration
public Quaternion? QuaternionOrientation { get; }
Property Value
Type | Description |
---|---|
Quaternion? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
Temperature
Current Temperature value
Declaration
public Temperature? Temperature { get; }
Property Value
Type | Description |
---|---|
Temperature? |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
TemperatureSource
Select the source of the Temperatute property.
Declaration
public Bno055.Sensor TemperatureSource { get; set; }
Property Value
Type | Description |
---|---|
Bno055.Sensor |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
Methods
ConvertReadingToEulerAngles(int, double)
Convert the sensor readings into an orientation in Euler angles
Declaration
protected EulerAngles ConvertReadingToEulerAngles(int start, double divisor)
Parameters
Type | Name | Description |
---|---|---|
int | start | First of the sensor readings to convert |
double | divisor | Divisor to apply to the sensor data |
Returns
Type | Description |
---|---|
EulerAngles | EulerAngles object containing the orientation informaiton |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
DisplayRegisters()
Read all of the registers and display their values on the Debug output.
Declaration
public void DisplayRegisters()
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
GetReadings(int, double)
Convert a section of the sensor data into a tuple
Declaration
protected (double X, double Y, double Z) GetReadings(int start, double divisor)
Parameters
Type | Name | Description |
---|---|---|
int | start | Start of the data in the sensorReadings member variable |
double | divisor | Divisor |
Returns
Type | Description |
---|---|
(double X, double Y, double Z) |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
RaiseEventsAndNotify(IChangeResult<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)>)
Raise events for subcribers and notify of value changes
Declaration
protected override void RaiseEventsAndNotify(IChangeResult<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)> changeResult)
Parameters
Type | Name | Description |
---|---|---|
IChangeResult<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)> | changeResult | The updated sensor data |
Overrides
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
ReadSensor()
Reads data from the sensor
Declaration
protected override Task<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)> ReadSensor()
Returns
Type | Description |
---|---|
Task<(Acceleration3D? Acceleration3D, AngularVelocity3D? AngularVelocity3D, MagneticField3D? MagneticField3D, Quaternion? QuaternionOrientation, Acceleration3D? LinearAcceleration, Acceleration3D? GravityVector, EulerAngles? EulerOrientation, Temperature? Temperature)> | The latest sensor reading |
Overrides
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
StartUpdating(TimeSpan?)
Start updating
Declaration
public override void StartUpdating(TimeSpan? updateInterval = null)
Parameters
Type | Name | Description |
---|---|---|
TimeSpan? | updateInterval | The time between updates |
Overrides
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
StopUpdating()
Stop reading data
Declaration
public override void StopUpdating()
Overrides
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
Events
Acceleration3DUpdated
Raised when the acceleration value changes
Declaration
public event EventHandler<IChangeResult<Acceleration3D>> Acceleration3DUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<Acceleration3D>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
AngularVelocity3DUpdated
Raised when the angular velocity value changes
Declaration
public event EventHandler<IChangeResult<AngularVelocity3D>> AngularVelocity3DUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<AngularVelocity3D>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
EulerOrientationUpdated
Raised when the euler orientation value changes
Declaration
public event EventHandler<IChangeResult<EulerAngles>> EulerOrientationUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<EulerAngles>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
GravityVectorUpdated
Raised when the gravity vector acceleration value changes
Declaration
public event EventHandler<IChangeResult<Acceleration3D>> GravityVectorUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<Acceleration3D>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
LinearAccelerationUpdated
Raised when the linear acceleration value changes
Declaration
public event EventHandler<IChangeResult<Acceleration3D>> LinearAccelerationUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<Acceleration3D>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
MagneticField3DUpdated
Raised when the magetic field value changes
Declaration
public event EventHandler<IChangeResult<MagneticField3D>> MagneticField3DUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<MagneticField3D>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
QuaternionOrientationUpdated
Raised when the quaernion orientation value changes
Declaration
public event EventHandler<IChangeResult<Quaternion>> QuaternionOrientationUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<Quaternion>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas
TemperatureUpdated
Raised when the temperature value changes
Declaration
public event EventHandler<IChangeResult<Temperature>> TemperatureUpdated
Event Type
Type | Description |
---|---|
EventHandler<IChangeResult<Temperature>> |
Remarks
Bno055 | |
---|---|
Status | |
Source code | GitHub |
Datasheet(s) | GitHub |
NuGet package |
BNO055 is a 9-axis absolute orientation sensor. The three sensors (accelerometer, gyroscope and magnetometer) are measured with a 32-bit cortex M0 microcontroller. The BNO055 is controlled via I2C.
Purchasing
Code Example
Bno055 sensor;
public override Task Initialize()
{
Resolver.Log.Info("Initialize...");
// create the sensor driver
sensor = new Bno055(Device.CreateI2cBus());
// classical .NET events can also be used:
sensor.Updated += (sender, result) =>
{
Resolver.Log.Info($"Accel: [X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.New.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.New.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.New.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.New.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.New.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.New.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.New.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.New.QuaternionOrientation?.X:N2}," +
$"Y:{result.New.QuaternionOrientation?.Y:N2}," +
$"Z:{result.New.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.New.EulerOrientation?.Heading:N2}," +
$"Roll: {result.New.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.New.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.New.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.New.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.New.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.New.Temperature?.Celsius:N2}C");
};
// Example that uses an IObservable subscription to only be notified when the filter is satisfied
var consumer = Bno055.CreateObserver(
handler: result => Resolver.Log.Info($"Observer: [x] changed by threshold; new [x]: X:{result.New.Acceleration3D?.X.MetersPerSecondSquared:N2}, old: X:{result.Old?.Acceleration3D?.X.MetersPerSecondSquared:N2}"),
// only notify if there's a greater than 1 micro tesla on the Y axis
filter: result =>
{
if (result.Old is { } old)
{ //c# 8 pattern match syntax. checks for !null and assigns var.
return ((result.New.Acceleration3D - old.Acceleration3D)?.Y > new Acceleration(1, AU.MetersPerSecondSquared));
}
return false;
});
sensor.Subscribe(consumer);
return Task.CompletedTask;
}
public async override Task Run()
{
await ReadConditions();
sensor.StartUpdating(TimeSpan.FromMilliseconds(500));
}
protected async Task ReadConditions()
{
var result = await sensor.Read();
Resolver.Log.Info("Initial Readings:");
Resolver.Log.Info($"Accel: [X:{result.Acceleration3D?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.Acceleration3D?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.Acceleration3D?.Z.MetersPerSecondSquared:N2} (m/s^2)]");
Resolver.Log.Info($"Gyro: [X:{result.AngularVelocity3D?.X.DegreesPerSecond:N2}," +
$"Y:{result.AngularVelocity3D?.Y.DegreesPerSecond:N2}," +
$"Z:{result.AngularVelocity3D?.Z.DegreesPerSecond:N2} (degrees/s)]");
Resolver.Log.Info($"Compass: [X:{result.MagneticField3D?.X.Tesla:N2}," +
$"Y:{result.MagneticField3D?.Y.Tesla:N2}," +
$"Z:{result.MagneticField3D?.Z.Tesla:N2} (Tesla)]");
Resolver.Log.Info($"Gravity: [X:{result.GravityVector?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.GravityVector?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.GravityVector?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Quaternion orientation: [X:{result.QuaternionOrientation?.X:N2}," +
$"Y:{result.QuaternionOrientation?.Y:N2}," +
$"Z:{result.QuaternionOrientation?.Z:N2}]");
Resolver.Log.Info($"Euler orientation: [heading: {result.EulerOrientation?.Heading:N2}," +
$"Roll: {result.EulerOrientation?.Roll:N2}," +
$"Pitch: {result.EulerOrientation?.Pitch:N2}]");
Resolver.Log.Info($"Linear Accel: [X:{result.LinearAcceleration?.X.MetersPerSecondSquared:N2}," +
$"Y:{result.LinearAcceleration?.Y.MetersPerSecondSquared:N2}," +
$"Z:{result.LinearAcceleration?.Z.MetersPerSecondSquared:N2} (meters/s^2)]");
Resolver.Log.Info($"Temp: {result.Temperature?.Celsius:N2}C");
}
Sample project(s) available on GitHub
Wiring Example
The following diagram shows the BNO055 configured for bas